Graph the function. Identify the domain and range in interval notation and the horizontal or vertical asymptote.

1. $y = e^x$

2. $y = e^{x-1} + 3$

3. $y = \log_3 x$

4. $y = 2 - \log_3(x + 1)$

In #5, find a function of the form $y = a^x$ for the given graph. In #6, find a function of the form $y = log_a x$ for the given graph.

- 7. Suppose \$1000 is invested in an account that earns 10% annual interest. Find the amount of money earned after 5 years if it is compounded
 - a) Semiannually
 - b) Continuously

Express the function in its opposite form.

8.
$$3^4 = 81$$

9.
$$e^x = 2$$

9.
$$e^x = 2$$
 10. $\log_4 16 = 2$ 11. $\ln x = 5$

11.
$$\ln x = 5$$

Evaluate the expression.

13.
$$\log_{6} \sqrt{6}$$

14.
$$\log_5 25^8$$

15.
$$e^{\ln 6}$$

16.
$$\log_3 189 - \log_3 7$$

17.
$$\log_4 2 + \log_4 128$$

Find the domain of the function.

18.
$$y = \log_2(x + 3)$$

19.
$$y = \ln(2 - 5x)$$

Use the Laws of Logarithms to <u>condense</u> the expression.

20.
$$\ln 6 + 5 \ln x + 9 \ln(x^2 + 9)$$

21.
$$2\log x - 4\log y + \frac{1}{2}\log z$$

Use the Laws of Logarithms to <u>expand</u> the expression.

22.
$$\log\left(\frac{x^2}{yz^2}\right)$$

$$23. \log \sqrt{\frac{x-1}{x^2}}$$

Solve the equation. Round answers to the nearest thousandth.

24.
$$3^x = 26$$

25.
$$e^{2-3x} = 12$$

26.
$$12^x = 5^{x+4}$$

27.
$$x^39^x - 9^x = 0$$

28.
$$e^{2x} - 5e^x + 4 = 0$$

Solve the equation. Round answers to the nearest thousandth.

29.
$$\ln x = 5$$

30.
$$\log(9x + 6) = 2$$

31.
$$\log_3(4-x) = 7$$

32.
$$\log_3(x+4) - \log_3(x-4) = 3$$

33.
$$\log(x+2) + \log(x-1) = 1$$

- 34. Find the time required for an investment of \$3000 to increase to \$8000 if it is compounded quarterly at 8% annual interest.
- 35. The number of bacteria in a culture is given by $n(t) = 400e^{0.49t}$, where t is measured in hours.
 - a) How many bacteria remain after 5 hours?
 - b) After how many hours will the number of bacteria reach 10,000?
- 36. The fox population in a certain region has a growth rate of 6% per year. It is estimated that the population in 2000 was 16,000 foxes.
 - a) Find a function that models the population t years after 2000.
 - b) Estimate the fox population in 2012.
- 37. Uranium-234 has a half-life of 2.7×10^5 years.
 - a) Find the mass remaining of a 10 mg sample after 1000 years.
 - b) How long will it take for the substance to decompose to 7 mg?

38.	The half-life of palladium-100 is 4 days. After 20 days a sample has decomposed to a mass of 0.375 g.
	a) Find a function modeling the mass remaining after t days.
	b) After how many days will only 0.15 g remain?
39.	Newton's Law of Cooling is used in homicide investigations to determine time of death. Normal body temperature is 98.6°F. The body begins to cool immediately after death. It has been determined experimentally that $k = 0.1947$. Suppose a body was found outside where the temperature was $50^{\circ}F$.
	a) Find a function that models the temperature t hours after death.
	b) If the body had a temperature of 76°F, then how long ago was the time of death?
40.	A kettle full of water is brought to a boil in a room with a temperature of 20°C. After 15 minutes, the temperature of the water has increased from 70°C to 100°C. Find the temperature of the water after another 10 minutes.

Pre-Calculus

Chapter 4 Review Answers

39b. 3.2 hrs ago 40. 129.43°C

D: $(-\infty, \infty)$ R: $(0, \infty)$ HA: y = 0 D: $(-\infty, \infty)$ R: $(3, \infty)$ HA: y = 3 D: $(0, \infty)$ R: $(-\infty, \infty)$ VA: x = 0 D: $(-1, \infty)$ R: $(-\infty, \infty)$ VA: y = -1 5. $y = \left(\frac{1}{4}\right)^x$ 6. $y = log_2 x$ 7a. \$1,628.89 7b. \$1648.72 8. $log_3 81 = 4$ 9. $log_3 81 = 4$ 10. $log_3 81 = 4$ 11. $log_3 81 = 4$ 12. 3 13. $log_3 81 = 4$ 9. $log_3 81 = 4$ 9. $log_3 81 = 4$ 10. $log_3 81 = 4$ 11. $log_3 81 = 4$ 12. 3 14. 16 15. 6 16. 3 17. 4 18. $(-3, \infty)$ 19. $\left(-\infty, \frac{2}{5}\right)$ 20. $log_3 81 = 4$ 9. $log_3 81 = 4$ 11. $log_3 81 = 4$ 12. 3 13. $log_3 81 = 4$ 14. 16 15. 6 16. 3 17. 4 18. $log_3 81 = 4$ 17. $log_3 81 = 4$ 18. $log_3 81 = 4$ 19. $log_3 81 = 4$